合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 仲醇聚氧乙烯醚硫酸鹽平衡和動(dòng)態(tài)表面張力及應(yīng)用性能研究(三)
> 納米沸石咪唑酯骨架ZIF-8顆粒的油水界面張力和接觸角測(cè)定及巖心驅(qū)替實(shí)驗(yàn)——摘要、材料與方法
> 棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數(shù)研究(一)
> 酚胺樹脂聚醚型破乳劑分子結(jié)構(gòu)、濃度對(duì)油-水界面張力的影響——結(jié)果與討論、結(jié)論
> 固體、鹽溶液表面張力測(cè)量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 什么是超微量天平,超微量天平使用方法、最小稱量值
> Sb合金元素對(duì)鋅液與X80鋼表面張力、潤(rùn)濕性及界面反應(yīng)的影響——實(shí)驗(yàn)
> 海上抗超高溫低滲透儲(chǔ)層鉆開液配方設(shè)計(jì)及應(yīng)用效果(二)
> 溫度及壓強(qiáng)對(duì)CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
> 超微量天平應(yīng)用案例:鉛試金富集稱量法測(cè)定含銅物料中金和銀含量
推薦新聞Info
-
> 表面張力在封閉腔體自然對(duì)流換熱中的角色深度分析
> 鉑金板法測(cè)定不同濃度、溫度、表面活性劑對(duì)氨水表面張力值(二)
> 鉑金板法測(cè)定不同濃度、溫度、表面活性劑對(duì)氨水表面張力值(一)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測(cè)試與篩選(三)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測(cè)試與篩選(二)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測(cè)試與篩選(一)
> 紫檀芪的穩(wěn)定性增強(qiáng)型抗氧化劑制作備方及界面張力測(cè)試——結(jié)果與討論、結(jié)論
> 紫檀芪的穩(wěn)定性增強(qiáng)型抗氧化劑制作備方及界面張力測(cè)試—— 引言、材料與方法
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機(jī)制(下)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機(jī)制(中)
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——摘要、簡(jiǎn)介
來源:過程工程學(xué)報(bào)李天骕 劉劍雄 單顯祥 李堪鵬 瀏覽 1090 次 發(fā)布時(shí)間:2024-05-28
摘要:本工作利用表面能與內(nèi)聚能的比例關(guān)系,計(jì)算了液態(tài)Ag的表面張力和表面過剩熵。結(jié)果顯示,隨著溫度的升高,表面張力近似線性下降,表面過剩熵也逐漸減小,這表明液態(tài)Ag表面總是保持有序結(jié)構(gòu)。在此基礎(chǔ)上,證明了Ag-O系具有理想溶體性質(zhì),并簡(jiǎn)化了Butler方程,修正了液態(tài)Ag-O系表面張力關(guān)于氧氣壓力和溫度的預(yù)測(cè)模型。結(jié)果表明,當(dāng)氧氣壓力低于10 kPa時(shí),液態(tài)Ag-O系的表面張力與溫度呈負(fù)相關(guān);而當(dāng)氧氣壓力高于10 kPa時(shí),隨著溫度的升高,表面張力呈現(xiàn)先增大后減小的趨勢(shì)。此外,還探究了O原子的表面偏析行為。研究發(fā)現(xiàn),表面偏析因子與溫度和氧氣壓力均呈負(fù)相關(guān),在較低的溫度和氧氣壓力下,O原子傾向富集于表面。
1、前言
表面張力是液態(tài)金屬的重要物理參數(shù)之一,其在控制各種界面現(xiàn)象中發(fā)揮著關(guān)鍵作用。因此,獲取準(zhǔn)確的表面張力至關(guān)重要。目前,常用的表面張力測(cè)量方法包括滴外形法[1]、最大泡壓法[2]、毛細(xì)血管上升法[3]和電磁懸浮法[4]等。然而,實(shí)驗(yàn)結(jié)果之間通常存在較大差異[5]。一方面是實(shí)驗(yàn)方法本身存在誤差,另一方面則是實(shí)驗(yàn)結(jié)果受到雜質(zhì)的影響。實(shí)際上,表面雜質(zhì)存在會(huì)顯著降低表面張力。對(duì)于液態(tài)Ag,其與氧之間有很強(qiáng)的親和力,在氧氣壓力為100 kPa的條件下,液態(tài)Ag能夠溶入自身體積約21倍的氧[6]。由于實(shí)驗(yàn)過程幾乎無法避免氧的存在,并且在高溫下測(cè)量表面張力也十分困難。因此,表面張力的理論研究受到廣泛關(guān)注。
Gibbs吸附方程[7]最早用于描述溶液的表面張力和表面過剩量。Langmuir方程[8]基于單層吸附假設(shè),揭示了溶質(zhì)濃度和表面覆蓋度之間的平衡關(guān)系。Belton方程[9]在前兩者的基礎(chǔ)上闡明了溶液表面張力隨溶質(zhì)濃度的變化關(guān)系。Szyszkowski經(jīng)驗(yàn)方程[10]則在擬合表面張力測(cè)量結(jié)果方面得到廣泛應(yīng)用。然而,這些模型中均存在待確定參數(shù),且依賴大量實(shí)驗(yàn)數(shù)據(jù),因此預(yù)測(cè)能力較差。當(dāng)前,已經(jīng)發(fā)展出諸多理論模型和方法,包括Skapski模型[11]、Eyring理論[12]、梯度理論[13]、Gheribi半經(jīng)驗(yàn)?zāi)P蚚14]以及蒙特卡羅法[15]和分子動(dòng)力學(xué)法[16]等。但是,這些方法也存在一定的局限性。蒙特卡羅法和分子動(dòng)力學(xué)法在進(jìn)行計(jì)算機(jī)模擬時(shí)存在較高的波動(dòng)性和統(tǒng)計(jì)不確定性,Gheribi半經(jīng)驗(yàn)?zāi)P秃吞荻壤碚摼枰罅康膶?shí)驗(yàn)數(shù)據(jù)支持,而Skapski模型和Eyring理論則不適用于金屬-氣體系統(tǒng)研究。在以往的探索中,Butler方程[17]通常用于計(jì)算僅含金屬的二元合金表面張力,自Kaptay[18]改進(jìn)了Butler方程后,改進(jìn)的Butler方程便可用于預(yù)測(cè)金屬-氣系統(tǒng)的表面張力[19]。
在本工作中,通過表面能與內(nèi)聚能的比例關(guān)系計(jì)算了液態(tài)Ag的表面張力和表面過剩熵。基于此,通過合理假設(shè),將液態(tài)Ag-O系視為理想溶液,從而簡(jiǎn)化Butler方程,獲得了液態(tài)Ag-O系的表面張力關(guān)于氧氣壓力和溫度的預(yù)測(cè)模型。此外,還探究了O原子的表面偏析行為。該研究為深入探索液態(tài)Ag-O系的表面性質(zhì)提供數(shù)據(jù)支持,并為金屬-氣系統(tǒng)表面張力預(yù)測(cè)模型的優(yōu)化提供參考。
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——摘要 、簡(jiǎn)介
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——模型
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——結(jié)果與討論





