合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應用性能研究(三)
> 納米沸石咪唑酯骨架ZIF-8顆粒的油水界面張力和接觸角測定及巖心驅(qū)替實驗——摘要、材料與方法
> 棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數(shù)研究(一)
> 酚胺樹脂聚醚型破乳劑分子結(jié)構(gòu)、濃度對油-水界面張力的影響——結(jié)果與討論、結(jié)論
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 什么是超微量天平,超微量天平使用方法、最小稱量值
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應的影響——實驗
> 海上抗超高溫低滲透儲層鉆開液配方設(shè)計及應用效果(二)
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
> 超微量天平應用案例:鉛試金富集稱量法測定含銅物料中金和銀含量
推薦新聞Info
-
> 表面張力在封閉腔體自然對流換熱中的角色深度分析
> 鉑金板法測定不同濃度、溫度、表面活性劑對氨水表面張力值(二)
> 鉑金板法測定不同濃度、溫度、表面活性劑對氨水表面張力值(一)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(三)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(二)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(一)
> 紫檀芪的穩(wěn)定性增強型抗氧化劑制作備方及界面張力測試——結(jié)果與討論、結(jié)論
> 紫檀芪的穩(wěn)定性增強型抗氧化劑制作備方及界面張力測試—— 引言、材料與方法
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機制(下)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機制(中)
探索界面張力梯度驅(qū)動對流轉(zhuǎn)捩規(guī)律
來源:力學進展 瀏覽 1034 次 發(fā)布時間:2024-07-05
界面張力梯度驅(qū)動對流是空間自然對流熱質(zhì)輸運的基本形式,對其時空轉(zhuǎn)捩過程、轉(zhuǎn)捩機制、非線性特征及流動向湍流轉(zhuǎn)捩途徑等基本規(guī)律的研究,一方面可以豐富非線性動力學的相關(guān)理論,另一方面對于人類認識、探索和利用空間環(huán)境也具有重要的應用價值,是微重力流體物理的重要研究內(nèi)容和學科前沿。本文對目前的研究現(xiàn)狀進行了總結(jié),重點介紹了研究液層界面張力梯度驅(qū)動對流的實驗及數(shù)值模擬方法,雖然已有的研究已經(jīng)得到在不同模型和工況下的各種轉(zhuǎn)捩模式,但是在轉(zhuǎn)捩規(guī)律上仍需要更深入的探索,可以從以下幾個方面著手:
(1)理論分析和數(shù)值模擬結(jié)果的正確性需要由實驗來驗證,空間實驗可以滿足微重力環(huán)境、長時間觀測的要求,但是空間實驗有一定難度且機會來之不易,故而可以考慮進一步發(fā)展實驗手段,以實現(xiàn)數(shù)值模擬中采用的更豐富的工況;以及加強對實驗條件的控制,以降低無關(guān)因素的干擾,提高實驗精度。
(2)目前關(guān)于液層界面張力梯度驅(qū)動對流向湍流的超臨界轉(zhuǎn)捩在數(shù)值方法上主要有流動時序數(shù)據(jù)的分析和分岔問題的數(shù)值算法。流動宏觀量的時序數(shù)據(jù)來自實驗結(jié)果或者直接數(shù)值模擬,對于后者,需要對于不同參數(shù)分別進行數(shù)值模擬,再通過時間序列頻譜及其混沌特性的定量計算分析流動轉(zhuǎn)捩規(guī)律,即在大量的離散的數(shù)據(jù)序列中尋找分岔點,故此過程比較繁瑣。而通過構(gòu)造分岔方程對分岔進行數(shù)值計算的方法雖然可以一步到位,但是在選取分岔方程,解高維線性、非線性方程等過程中均需要根據(jù)具體的流動模型進行調(diào)整,具有一定難度,且對于更加復雜的流動模式需要更大的計算量,用此算法也無法直接計算得到混沌解。上述兩種方法各有優(yōu)缺點,目前在轉(zhuǎn)捩過程的數(shù)值研究中較為常用的仍是在不同參數(shù)下進行直接數(shù)值模擬,而后對大量數(shù)據(jù)進行頻譜分析,識別分岔點;在直接對分岔進行數(shù)值計算的研究中,也常常需要通過直接數(shù)值模擬來驗證分岔得到的解的可靠性與準確性,在今后的研究中可考慮進一步將兩種方法結(jié)合運用,互相補充、驗證。
(3)液層界面張力梯度驅(qū)動對流向湍流轉(zhuǎn)捩的過程中會產(chǎn)生豐富的流動模式,轉(zhuǎn)捩過程除了與上文提到的液層模型、無量綱參數(shù)(Prandtl數(shù)、高徑比、體積比等)有關(guān),還受到熱邊界條件(如體系是否絕熱)、加熱方式及加熱速率等因素的影響;此外,在具體的應用場景中通常有多種流動相互作用,考慮界面張力梯度驅(qū)動對流與其他諸如浮力、電磁場、旋轉(zhuǎn)等效應的耦合,對于重新檢視已發(fā)現(xiàn)的轉(zhuǎn)捩途徑以及尋找新的轉(zhuǎn)捩途徑均有一定的積極意義。
(4)目前對于液層界面張力梯度驅(qū)動對流向湍流轉(zhuǎn)捩的研究仍不夠完善,在對超臨界轉(zhuǎn)捩階段的實驗及數(shù)值模擬研究中觀察到了許多復雜的轉(zhuǎn)捩模式,但大多只是現(xiàn)象上的描述,并未總結(jié)出普遍的規(guī)律;對于流動最終能否通向混沌暫無普適的判據(jù),流動通向混沌過程中出現(xiàn)的諸如陣發(fā)、鎖頻等特殊的現(xiàn)象也尚未有更本質(zhì)的機理上的解釋??傊瑢τ谵D(zhuǎn)捩規(guī)律的深入理解,需要界面張力梯度驅(qū)動對流這一非線性模型在理論上的進一步發(fā)展,未來道阻且長。





