合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應(yīng)用性能研究(三)
> 納米沸石咪唑酯骨架ZIF-8顆粒的油水界面張力和接觸角測定及巖心驅(qū)替實驗——摘要、材料與方法
> 棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數(shù)研究(一)
> 酚胺樹脂聚醚型破乳劑分子結(jié)構(gòu)、濃度對油-水界面張力的影響——結(jié)果與討論、結(jié)論
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 什么是超微量天平,超微量天平使用方法、最小稱量值
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應(yīng)的影響——實驗
> 海上抗超高溫低滲透儲層鉆開液配方設(shè)計及應(yīng)用效果(二)
> 溫度及壓強(qiáng)對CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
> 超微量天平應(yīng)用案例:鉛試金富集稱量法測定含銅物料中金和銀含量
推薦新聞Info
-
> 表面張力在封閉腔體自然對流換熱中的角色深度分析
> 鉑金板法測定不同濃度、溫度、表面活性劑對氨水表面張力值(二)
> 鉑金板法測定不同濃度、溫度、表面活性劑對氨水表面張力值(一)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(三)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(二)
> 單萜萜類驅(qū)油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(一)
> 紫檀芪的穩(wěn)定性增強(qiáng)型抗氧化劑制作備方及界面張力測試——結(jié)果與討論、結(jié)論
> 紫檀芪的穩(wěn)定性增強(qiáng)型抗氧化劑制作備方及界面張力測試—— 引言、材料與方法
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機(jī)制(下)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結(jié)構(gòu)形成機(jī)制(中)
生物表面活性劑產(chǎn)生菌菌體密度、細(xì)胞疏水性與發(fā)酵液pH及表面張力的關(guān)系(二)
來源:大連工業(yè)大學(xué)學(xué)報 瀏覽 1115 次 發(fā)布時間:2024-09-14
2結(jié)果與分析
2.1生物表面活性劑產(chǎn)生菌的篩選
經(jīng)富集分離共得到49株細(xì)菌,初步篩選出14株生長較好的目的菌株接種于發(fā)酵培養(yǎng)基。在微生物采油過程中,表面活性劑和有機(jī)酸可以把原油從巖層中剝離下來,提高原油流動性。因此,以發(fā)酵過程中發(fā)酵液的pH和表面張力的降低為指標(biāo),對初篩得到的菌株進(jìn)行復(fù)篩,同時分析所產(chǎn)生物表面活性劑的類型,結(jié)果見表1。
表1初篩菌株的發(fā)酵測定結(jié)果
由表1可知,菌株29#、30#、31#、37#、47#的發(fā)酵液的表面張力值及pH較低。選取該5株菌進(jìn)行分析,菌株29#、30#、31#發(fā)酵液的表面張力及pH比較接近,產(chǎn)生的生物表面活性劑均為糖脂,在原油平板上的菌落均為熒光綠色,種子液和發(fā)酵液均為熒光綠色,細(xì)胞均為桿狀且大小相同。因此,判斷該3株菌為同一菌種。復(fù)篩得到的菌株為31#、37#、47#。
2.2生物表面活性劑產(chǎn)生菌的生理生化特性
對篩選所得菌株進(jìn)行常規(guī)生理生化特性實驗,結(jié)果如表2所示。根據(jù)表2所示結(jié)果和《伯杰氏(Berge)菌種鑒定手冊》的描述,可鑒定菌株31#為假單孢屬,菌株37#、47#均為芽孢桿菌屬。
表2生物表面活性劑產(chǎn)生菌的生理生化特性
2.3生物表面活性劑產(chǎn)生菌的生長特性
2.3.1菌株31#的生長特性
菌株31#的生長特性如圖1所示。在發(fā)酵前48 h,菌株31#細(xì)胞疏水性呈上升趨勢,菌體密度逐步增長,發(fā)酵液的表面張力下降。表明較強(qiáng)的細(xì)胞疏水性能增加菌體對疏水性有機(jī)物的吸附,從而增加菌體與有機(jī)物的接觸機(jī)會,增強(qiáng)對有機(jī)物的利用能力,導(dǎo)致菌體大量生長并產(chǎn)生大量的生物表面活性物質(zhì),使發(fā)酵液的表面張力大幅度下降,產(chǎn)生的生物表面活性物質(zhì)通過改變吸附界面的特性來調(diào)節(jié)細(xì)胞與界面之間的親和力,進(jìn)一步促進(jìn)微生物細(xì)胞對烴類化合物的附著和烴類化合物穿透細(xì)胞膜間隙。在發(fā)酵48~84 h期間,菌體生長進(jìn)入衰亡期,細(xì)胞疏水性下降,發(fā)酵液的表面張力呈下降趨勢,這是部分菌體自溶釋放出細(xì)胞內(nèi)的生物表面活性物質(zhì)的結(jié)果。在發(fā)酵84~108 h期間,細(xì)胞疏水性呈下降趨勢,發(fā)酵液的表面張力隨菌體密度增大而增大,表明菌體攝取烴類化合物能力降低,利用發(fā)酵液中積累的生物表面活性劑呈現(xiàn)二次生長。在發(fā)酵108~120 h期間,細(xì)胞疏水性上升,表面張力下降。由于31#為革蘭氏陰性菌,細(xì)胞外壁中存在與其疏水性密切相關(guān)的脂多糖,發(fā)酵液中大量積累的生物表面活性劑導(dǎo)致細(xì)胞壁中脂多糖大量流失,從而引起細(xì)胞疏水性增大。
圖1菌株31#的好氧培養(yǎng)過程曲線
2.3.2菌株37#的生長特性
菌株37#的生長特性如圖2所示。在發(fā)酵過程中,細(xì)胞疏水性總體呈上升趨勢。發(fā)酵24 h時,細(xì)胞疏水性大于1,菌體密度隨細(xì)胞疏水性的增大而增大。發(fā)酵36 h時,發(fā)酵液的表面張力降低,這是因為烴類的難溶性使得微生物在攝取烴類生長過程中往往伴隨著生物表面活性劑的生成,其主要作用是使烴類在水溶液中有效擴(kuò)散,并滲入細(xì)胞內(nèi)部被同化分解,菌體能夠更好地利用烴類碳源生長,菌體密度上升。在發(fā)酵48~84 h期間,菌體生長進(jìn)入穩(wěn)定期,菌體密度保持不變。在發(fā)酵84~96 h期間,菌體密度上升,細(xì)胞出現(xiàn)二次生長。這是由于液體石蠟是一種混合物,菌體首先攝取較易利用的10個碳以上的長鏈烷烴,然后再利用其他鏈長的烷烴進(jìn)行生長,同時因為細(xì)胞疏水性上升,細(xì)胞利用液體石蠟的能力增強(qiáng),從而產(chǎn)生大量的生物表面活性物質(zhì),使發(fā)酵液的表面張力下降。在發(fā)酵96~120 h期間,細(xì)胞疏水性的降低,菌體密度降低,菌體生長進(jìn)入衰亡期,發(fā)酵液的表面張力上升。
圖2菌株37#的好氧培養(yǎng)過程曲線
2.3.3菌株47#的生長特性
菌株47#的生長特性如圖3所示。在發(fā)酵前48 h,菌體密度顯著增長,細(xì)胞疏水性增大,發(fā)酵液的表面張力降低。在發(fā)酵60~72 h期間,菌體密度減小,細(xì)胞疏水性降低,發(fā)酵液表面張力降低,菌體生長進(jìn)入衰亡期。在發(fā)酵72~84 h期間,菌體密度增加,細(xì)胞出現(xiàn)二次生長,產(chǎn)生大量的生物表面活性物質(zhì),使發(fā)酵液的表面張力大幅下降。在發(fā)酵84~120 h期間,菌體密度降低,發(fā)酵液的表面張力在保持一段時間的基本穩(wěn)定后升高。表明菌體在利用烴類生長過程中,產(chǎn)生了生物表面活性劑。生物表面活性劑的產(chǎn)生降低了油水界面張力,使烷烴得以有效擴(kuò)散,增大油水界面面積,從而便于細(xì)胞與較大油滴之間的直接接觸,同時使細(xì)胞的疏水性變大,導(dǎo)致細(xì)胞親油,從而有利于菌對烴類的利用。
圖3菌株47#的好氧培養(yǎng)過程曲線
2.4生物表面活性劑的化學(xué)組分分析
將菌株31#、37#和47#于30℃培養(yǎng)后,對發(fā)酵液萃取所得生物表面活性劑粗制品進(jìn)行硅膠薄層層析,結(jié)果如圖4所示。將萃取所得生物表面活性劑粗制品進(jìn)行酸解,硅膠薄層層析結(jié)果如圖5所示。
圖4的層析結(jié)果顯棕色,說明菌株31#、37#和47#所產(chǎn)的生物表面活性劑均為糖脂。由圖5可知,菌株31#、37#和47#所產(chǎn)的生物表面活性劑經(jīng)酸解后顯棕色斑點,且Rf值與鼠李糖的Rf值相同,說明菌株31#、37#和47#所產(chǎn)的生物表面活性劑的糖基均為鼠李糖。
圖4生物表面活性劑粗品的TLC圖譜
圖5生物表面活性劑酸解后的TLC圖譜
3結(jié)論
通過對發(fā)酵液表面張力及pH的測定,篩選出3株生物表面活性劑產(chǎn)生菌,且所產(chǎn)的生物表面活性劑均為鼠李糖脂;經(jīng)生理生化鑒定,菌株31#為假單胞菌屬,菌株37#、47#為芽孢桿菌屬;通過對所篩菌株的生長特性的研究,說明菌體密度、細(xì)胞疏水性、發(fā)酵液的pH及表面張力之間密切相關(guān),相互制約。在以液體石蠟為唯一碳源培養(yǎng)時,菌株31#的發(fā)酵液表面張力下降最多,且表現(xiàn)出的細(xì)胞疏水性最強(qiáng),發(fā)酵液表面張力下降到49.47 mN/m,細(xì)胞疏水性為3.09%。較強(qiáng)的細(xì)胞疏水性有利于菌體對疏水性基質(zhì)的利用,從而導(dǎo)致菌體密度的增長及發(fā)酵液表面張力的下降,這對微生物開采稠油十分有利。





