合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 以大豆為原料合成的N-椰子油?;鶑秃习被岜砻婊钚詣┍砻鎻埩?、乳化起泡潤濕性能測定(一)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(四)
> 利用LB膜分析儀技術制備納米環組裝陣列,得到一種具有結構色的材料
> 水、常溫液態金屬等9種流體對液滴碰撞壁面影響的數值研究(二)
> 3種典型清水劑對不同原油組分界面穩定性、油滴聚并行為的影響(二)
> 4種油醇烷氧基化物平衡和動態表面張力、潤濕性、泡沫性、乳化性質研究(一)
> 烷基糖苷檸檬酸單酯二鈉鹽水溶液的動態表面張力測定及影響因素(上)
> 臨界表面張力、噴霧距離等對成熟期煙草農藥霧滴附著關鍵指標的影響——結果與討論、結論
> 烷基-β-D-吡喃木糖苷溶解性、表面張力、乳化性能等理化性質研究(二)
> LB制膜的應用領域、LB膜的制備方法、轉移與光照
推薦新聞Info
-
> 表面張力在封閉腔體自然對流換熱中的角色深度分析
> 鉑金板法測定不同濃度、溫度、表面活性劑對氨水表面張力值(二)
> 鉑金板法測定不同濃度、溫度、表面活性劑對氨水表面張力值(一)
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(三)
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(二)
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(一)
> 紫檀芪的穩定性增強型抗氧化劑制作備方及界面張力測試——結果與討論、結論
> 紫檀芪的穩定性增強型抗氧化劑制作備方及界面張力測試—— 引言、材料與方法
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(下)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(中)
不同溫度下手性離子液體及二元混合物的密度和表面張力(上)
來源:河北科技師范學院學報 瀏覽 1037 次 發布時間:2024-10-29
作為新興的綠色溶劑,離子液體具有一些獨特的性質,例如揮發性低,熱穩定性強,極性可控,以及對無機和有機物質具有良好的溶解性等。因此,其在合成、催化、電化學以及分離工程方面具有巨大的應用潛能。所以,對離子液體的物理化學性質的研究,例如密度,表面張力,粘度,以及溶解性等,就顯得尤為重要。目前,大多數文獻報道集中于常規離子液體,而手性離子液體的物化性質研究相對較少。由于手性離子液體同時具有離子液體的性質和手性,可應用于核磁共振(NMR),近紅外(NIR),不對稱合成,聚合反應,以及氣相色譜等。常見的手性離子液體因其陽離子帶有手性基團而具有手性;而對于陰離子具有手性的離子液體,其手性陰離子可以與傳統的陽離子結合,使離子液體本身具有手性。例如,帶有手性陰離子[L-lactate]-陰離子的咪唑類離子液體。
離子液體物理化學性質的研究對離子液體的設計和應用具有重要的指導作用,而對于離子液體與分子溶劑(例如水)的混合物性質研究將會揭示該類液體的新的應用。筆者在不同溫度下測定帶有手性陰離子的純離子液體1-丁基-3-甲基-咪唑乳酸鹽([bmim][L-lactate])及[bmim][L-lactate]+H2O二元混合物的密度和表面張力,并對其體積性質和表面性質進行研究。以期進一步豐富手性離子液體與分子溶劑二元混合物的物理化學性質數據,為其應用提供更多的理論依據。
1實驗部分
1.1藥品
手性離子液體[bmim][L-lactate](質量分數>0.99)購于上海益江化學有限公司。為了除去樣品中的水分,在使用前先將離子液體在80℃和真空狀態下烘干至少48 h。樣品的含水量由Karl Fisher滴定測得,其質量分數<0.000 2。
1.2離子液體密度的測定
樣品由Mettler AX-205天平稱量(METTLER TOLEDO,上海),質量精度為1×10-4。為了防止樣品吸水,在N2保護下采用Anton-Paar DMA4 500密度計測量樣品密度。測定的溫度范圍為293.15~343.15 K。密度測量精度為±0.000 2 g/cm3,測量溫度精度為±0.01 K。測量儀器使用二次蒸餾水校準,取3次重復性實驗結果的平均值作為結果。
1.3離子液體表面張力的測定
表面張力的測量采用白金板法,應用DCAT21(Dataphysics,Germany)表面張力儀進行測定。測定的溫度范圍為293.15~343.15 K。為了防止液體表面污染和吸水,表面張力的測量在N2保護下進行。樣品放置于體積為40 cm3密閉的容器中進行測量,溫度精度為±0.02 K。在進行測量前,白金板和容器在硝酸溶液中浸泡數小時后使用蒸餾水沖洗,燒干,再次用蒸餾水沖洗后進行干燥。取5次實驗的平均值作為結果,精度為±0.15 mN/m。
2結果與分析
2.1[bm im][L-lactate]的體積性質
在293.15~343.15 K溫度范圍內,實驗測得的離子液體[bmim][L-lactate]的密度隨著溫度的升高而減小(圖1)。根據不同溫度下的密度,可以得到[bmim][L-lactate]的熱膨脹系數。實驗測得的lnρ對T繪于圖1,并對其進行了線性擬合,得到經驗公式:
式中ρ為離子液體密度(單位:g·cm3),T為液體溫度(單位:K),相關系數為0.999 7。離子液體的熱膨脹系數通過下式獲得:
式中α為熱膨脹系數(單位:K-1),V為離子液體體積(單位:cm3),ρ為離子液體密度(單位:g·cm-3),T為離子液體溫度(單位:K)。由擬合曲線得到[bmim][L-lactate]的熱膨脹系數為8.31×10-4K-1,該值大于[emim][L-lactate]的熱膨脹系數(8.0×10-4K-1)。
根據實驗測得的密度,可由下試計算出離子液體的分子體積:
式中Vm為離子液體的分子體積(單位:nm3),M為[bmim][L-lactate]的摩爾質量,228.29 g·mol-1;N為阿伏伽德羅常數。在298.15 K,計算得到[bmim][L-lactate]的分子體積為0.341 2 nm3。
根據Glasser的理論,熵可由分子體積計算得到:
式中So(298)為298 K下離子液體的標準熵(單位:J·(mol·K)-1),298.15 K時,[bmim][L-lactate]的標準熵為454.8 J·(mol·K)-1。
晶格能(UPOT)可以反映出離子液體陰陽離子間的相互作用,而根據密度可以對晶格能進行估算,然后可以進一步計算熱組成。根據Glasser提出的理論,晶格能可由下式計算得到:
式中UPOT為晶格能(單位:kJ·mol-1),ρ為離子液體密度(單位:g·cm-3),M為[bmim][L-lactate]的摩爾質量,228.29 g·mol-1。計算得到的離子液體[bmim][L-lactate]的晶格能為439.6 kJ·mol-1,比[emim][L-lactate]的晶格能小(457.7 kJ·mol-1)。這說明[bmim][L-lactate]要比[emim][L-lactate]陰陽離子間的相互作用弱。





