合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> pH對(duì)馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(四)
> 基于懸滴法測量硅油黏滯液體的表面張力系數(shù)——實(shí)驗(yàn)原理
> 雙內(nèi)凹結(jié)構(gòu)表面可實(shí)現(xiàn)對(duì)低表面張力液體的穩(wěn)固超排斥
> 4種新型稀土雙酞酞菁衍生物合成及LB膜的制備
> 防治劍麻介殼蟲病,推薦劑量下藥劑的表面張力值多少最佳
> 表面張力儀分析生物表面活性劑對(duì)菲、1-硝基萘的增溶與洗脫效果和機(jī)制
> 乳化劑、皂液pH值、締合型增稠劑T對(duì)乳化瀝青油水界面張力和貯存穩(wěn)定性的影響
> 仲醇聚氧乙烯醚硫酸鹽平衡和動(dòng)態(tài)表面張力及應(yīng)用性能研究(一)
> 煙道氣與正己烷對(duì)稠油表面張力的影響機(jī)制研究(一)
> 人工沖洗升級(jí)為超聲波清洗,可改善新能源電池沖壓配件的表面張力
推薦新聞Info
-
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對(duì)礦漿表面張力的影響(三)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對(duì)礦漿表面張力的影響(二)
> 不同礦漿濃度、粒度、伴生礦物、捕收劑和起泡劑對(duì)礦漿表面張力的影響(一)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應(yīng)用(三)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應(yīng)用(二)
> 長慶油田隴東地區(qū)的CQZP-1助排劑表/界面張力測量及現(xiàn)場應(yīng)用(一)
> 液膜斷裂點(diǎn)與電壓最大值在表面張力測量中的對(duì)比研究(二)
> 液膜斷裂點(diǎn)與電壓最大值在表面張力測量中的對(duì)比研究(一)
> ?表面張力與表面張力系數(shù)測量:概念、方法與科學(xué)意義
> 微重力下二極對(duì)非均勻旋轉(zhuǎn)磁場控制半浮區(qū)液橋表面張力對(duì)流的數(shù)值研究(下)
3種不同變質(zhì)煤樣經(jīng)濕法超細(xì)粉碎后煤顆粒表面張力變化(二)
來源:中國粉體技術(shù) 瀏覽 194 次 發(fā)布時(shí)間:2026-01-28
2.2潤濕性分析
3種煤樣超細(xì)粉碎后的接觸角變化見圖1、2。可以看出,變質(zhì)程度高的太西煤的接觸角在100°左右波動(dòng),明顯大于神木不粘煤和淮南氣煤的接觸角(在75°左右變化)。還可以看出,濕法超細(xì)粉碎后3種變質(zhì)程度煤樣的接觸角的變化規(guī)律相似,在短時(shí)間的濕法超細(xì)粉碎后,接觸角變大,疏水性增強(qiáng),隨著超細(xì)粉碎時(shí)間的延長,接觸角減小。總體來看,神木煤與淮南煤在濕法超細(xì)粉碎后的接觸角大于超細(xì)粉碎前的,說明對(duì)于低階煤,在濕法超細(xì)粉碎后,煤顆粒表面的疏水性在一定程度上有所增強(qiáng),潤濕性減弱;太西煤在濕法粉磨30、45min后的接觸角小于超細(xì)粉碎前的,由此可得,對(duì)于高階煤,長時(shí)間進(jìn)行濕法超細(xì)磨礦會(huì)劣化煤顆粒表面的疏水性。
圖1超細(xì)粉碎后接觸角的測量圖(使用Delta-8表面張力儀測得)
圖2超細(xì)粉碎后接觸角的變化(使用Delta-8表面張力儀測得)
3超細(xì)煤粉界面物理、化學(xué)量的計(jì)算
3.1煤顆粒的表面張力
朱定一等通過設(shè)計(jì)一種在有限液-固界面上的潤濕性表征體系,推導(dǎo)出在無限液-固界面系統(tǒng)中固相表面張力和液-固界面張力的計(jì)算方法,并且通過潤濕角實(shí)驗(yàn)和計(jì)算,證實(shí)了在接觸角較大時(shí),該理論對(duì)固相表面張力的一致性。圖3所示為液相在無限固體平面上的潤濕表征系統(tǒng)。其中γsl、γlg、γsg分別表示固-液、液-氣、固-氣3個(gè)界面上的表面張力,O為氣-液-固三相接觸點(diǎn),θ1為氣-液界面的切線與固-液界面的夾角,即接觸角。當(dāng)達(dá)到平衡時(shí),作用于潤濕周邊的3個(gè)表面張力在水平方向的分力必為0,此時(shí)的平衡狀態(tài)方程,即Young方程為
圖3無限液-固界面的表面張力分布
γsg=γsl+γlgcosθ1,0°≤θ1≤180°(1)
圖4所示為有限液-固界面的潤濕表征體系。其中θ2為平衡狀態(tài)下液滴能保持的最大接觸角,此時(shí),以O(shè)點(diǎn)為中心,液滴在水平和垂直方向上的張力合力為0,因此在水平方向有
圖4有限液-固界面的表面張力分布
γsl=-γlgcosθ2,90°≤θ2≤180°(2)
在垂直方向有
γsg=γlgsinθ2,90°<θ2≤180°(3)
將式(3)代入Young方程中有
γsl=γlg(sinθ2-cosθ1),90°≤θ2≤180°,0°≤θ1≤180°(4)
由于sinθ2=√(1-cos2θ2),cosθ2=-γsl/γlg,因此,將式(5)代入式(4)中解析后得
γsl=(γlg/2)(√(1+sin2θ1)-cosθ1),0°≤θ1≤180°(6)
將式(6)代入Young方程中有
γsg=(γlg/2)(√(1+sin2θ1)+cosθ1),0°<θ1≤180°(7)
式(6)、(7)即為在無限界面體系中液-固界面與固體表面的表面張力計(jì)算式。這種方法計(jì)算得到的表面張力是未加任何假設(shè)條件的理論解。由式(6)、(7)可得,通過實(shí)驗(yàn)測量接觸角θ(如圖3、4中的θ1、θ2)與液相的表面張力即可求得液-固界面與固體表面的表面張力。計(jì)算結(jié)果見圖5,其中γlg=72.75 mJ/m2。由圖可知,與太西煤相比,神木煤和淮南煤有較大的表面張力,隨著變質(zhì)程度的增加,煤顆粒的表面張力減小。超細(xì)粉碎后的γsg與接觸角呈負(fù)相關(guān),γsl與接觸角呈正相關(guān)。3種煤樣的表面張力、煤-水界面張力與接觸角的關(guān)系見圖6。隨著水在煤表面的接觸角的增加,煤顆粒的表面張力減小,煤-水界面張力增大,潤濕性劣化。煤粉表面張力越小,煤粉-水界面的表面張力越大,在與氣泡接近過程中,更易于排開表面的水分子,與氣泡接觸。
圖5超細(xì)粉碎后煤顆粒表面張力與煤顆粒-水表面張力的變化
圖6煤粉表面張力與接觸角的關(guān)系
3.2煤顆粒-水體系的粘附功
液相從固相表面分離所需的單位面積功即為粘附功Wsl。根據(jù)Dupre方程
γsl=γsg+γlg-Wsl(8)
將式(6)、(7)代入式(8),可得在無限界面液-固體系中的煤顆粒與水的粘附功表達(dá)式:
Wsl=γlg(1+cosθ1),0°≤θ1≤180°(9)
將接觸角θ與γlg代入式(9)可得煤顆粒與水的粘附功,結(jié)果見圖7。由圖可知,隨著超細(xì)粉碎時(shí)間的延長,煤-水體系的粘附功的變化趨勢與接觸角的變化趨勢相反。3種煤樣的接觸角與粘附功的關(guān)系見圖8。由圖可知,隨著接觸角的增大,煤-水界面的粘附功減小,說明粘附功越小,煤顆粒的潤濕性越差。粘附功也可作為衡量煤顆粒潤濕性的指標(biāo)。
圖7超細(xì)粉碎后煤顆粒-水體系粘附功的變化
圖8粘附功與接觸角的關(guān)系
4結(jié)論
1)神木不粘煤與淮南氣煤2種低階煤在濕法超細(xì)粉碎后疏水性增強(qiáng),隨著超細(xì)粉碎時(shí)間的延長,疏水性先增強(qiáng),然后有所減弱;太西無煙煤在長時(shí)間濕法超細(xì)粉碎后疏水性減弱,甚至弱于超細(xì)粉碎前的。
2)隨著變質(zhì)程度的增加,煤顆粒的表面張力減小;隨著煤顆粒粒度的減小,不同變質(zhì)程度煤樣的表面張力與接觸角呈負(fù)相關(guān),煤-水界面張力與接觸角呈正相關(guān);接觸角增大,煤顆粒表面張力減小,煤-水界面張力增大。
3)超細(xì)粉碎后,煤-水體系的粘附功的變化趨勢與接觸角的變化趨勢相反。接觸角越大,煤-水體系的粘附功越小,煤顆粒的潤濕性越差;粘附功也可作為衡量潤濕性的標(biāo)準(zhǔn)。





